

Metrology Advances for Digitized ECS (Semiconductor and Automotive) Industry 4.0

Ilan Englard Applied Materials Israel December 7th 2020 **European Collaborations Driving Smart Manufacturing Excellence Webinar**

MADEin4 Project Essentials

Objective and Industry 4.0 boosters

Automotive and Semiconductor domains analogy

Data is the new oil: design, modeling, metrology and ML Context creation

Automotive domain use cases

Summary and Outlook

AGENDA

MADEin4 Project Essentials

Objective and Industry 4.0 boosters

MADEIn4 project essentials

Number of consortium members: 47

• Countries involved: 10

• Start date: April 1, 2019

• Duration: 36 months

• Total effort: person.months: 10,503 (875 person.years)

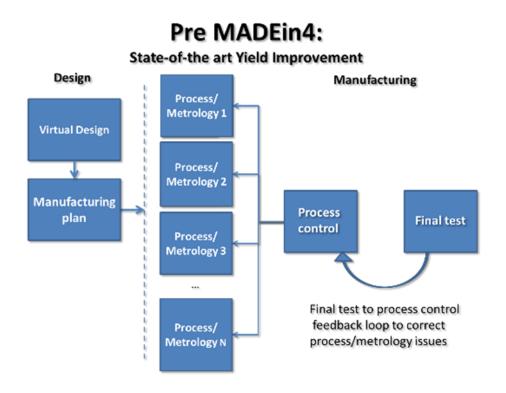
• Total H2020 eligible costs: € 126,176,472.50

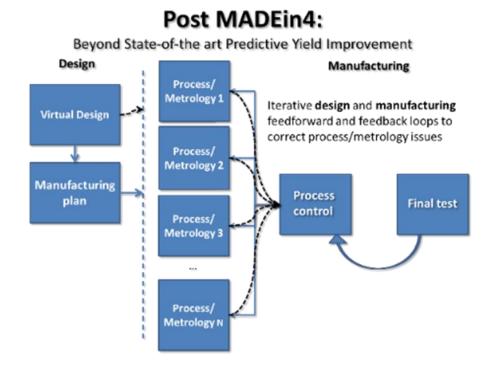
MADEIn4 project essentials

Objective and Industry 4.0 boosters

Develop and qualify new productivity boosters:

- Booster 1: High-productivity metrology and inspection tools for semiconductor and automotive industry
- Booster 2: Ready for "industry 4.0" Cyber Physical Systems (CPS):
 - Higher data rates and smart acquisition and processing
 - Smart use of data to improve the over-all productivity and predictability





From: reactive manufacturing to predictive manufacturing

Litho/

SEM

Etch/

SEM

Semiconductor

Number of measurements per wafer 10³

Wafers per month 10⁵

Number different products $10^2 < x < 10^3$

Highly automated manufacturing

Number of inputs per unit process (features) 10²

Manufacturing process longevity much less than 10^1 years

Automotive

Number of measurements per car >>10³

Cars per month 10⁵

Number of different configurations $10^2 < x < 10^3$

Painting/ Optical inspection

Doors welding/

Optical inspection

Highly automated manufacturing

Number of inputs per unit process (features) 10²

Manufacturing process continuously under improvement and changes

CMP/ Reflectometry

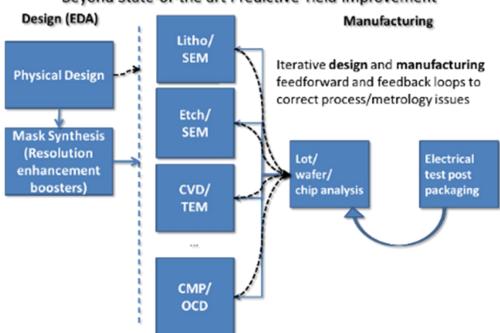
• • •

Engines Assembly/
EOL hot test

European Collaborations Driving Smart Manufacturing
Excellence Webinar 2020

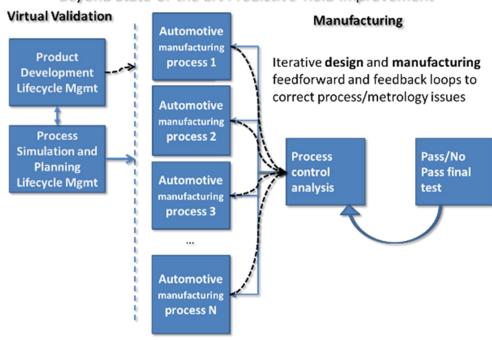
Post MADEin4 (Semiconductor):

Beyond State-of-the art Predictive Yield Improvement



Post MADEin4 (Automotive):

Beyond State-of-the art Predictive Yield Improvement



The Semiconductor and Automotive industries are sharing similar design and manufacturing flows and differ by the content of each of the design and manufacturing modules

This allows to develop innovative shared machine learning based methodologies which will enable the transformation of the manufacturing from reactive to predictive

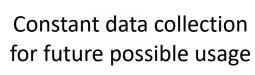
AGENDA

Data is the new oil: design, modeling, metrology and ML Context creation

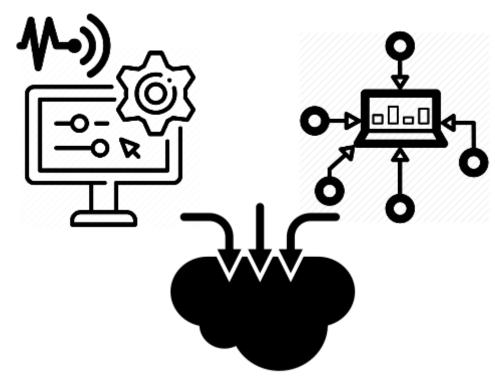
Data is the new oil

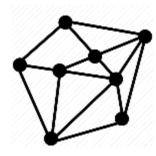
Data collected and pushed to the cloud

Sensors are added to industrial computers

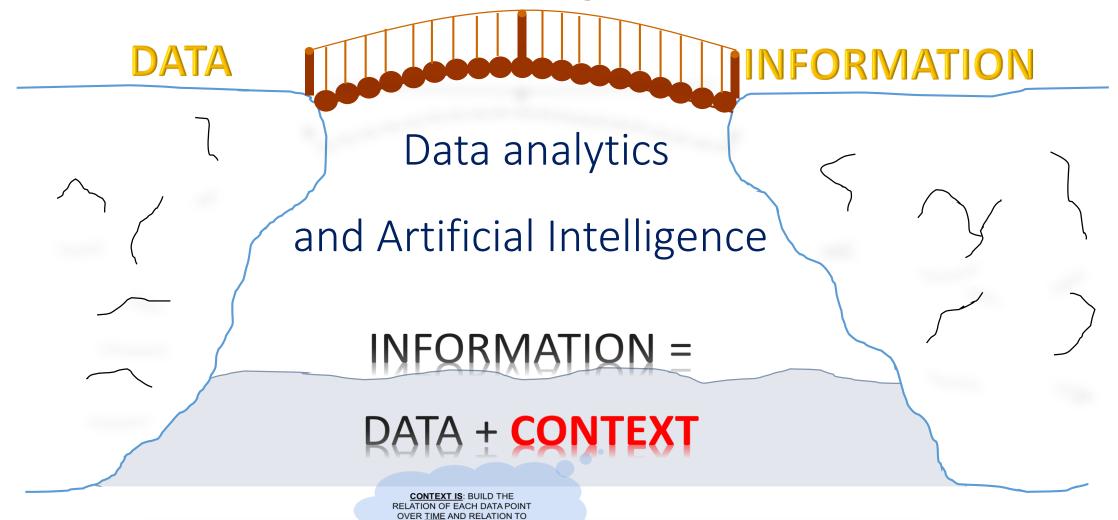


Data analysis by tailormade algorithms



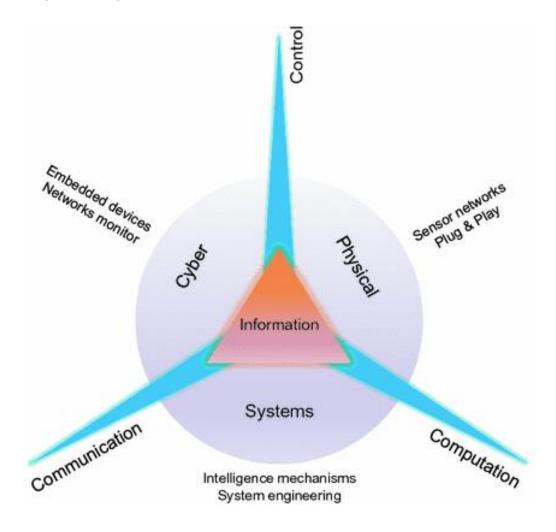


CONTEXT (crossing) the chasm



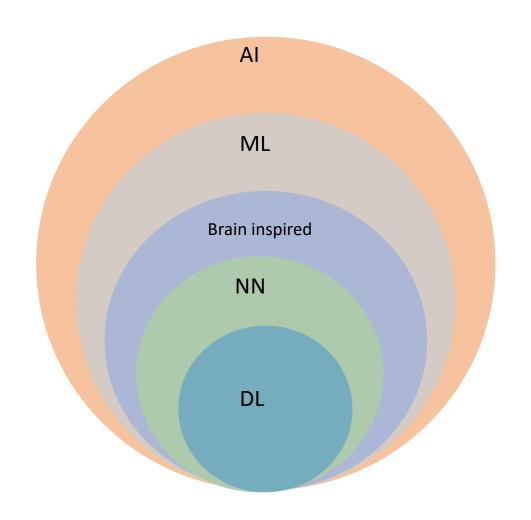
EACHOTHER

Cyber-physical Systems (CPS) for Information Creation



The interaction of physical and computing, including embedded intelligence at all levels

Artificial Intelligence (AI)

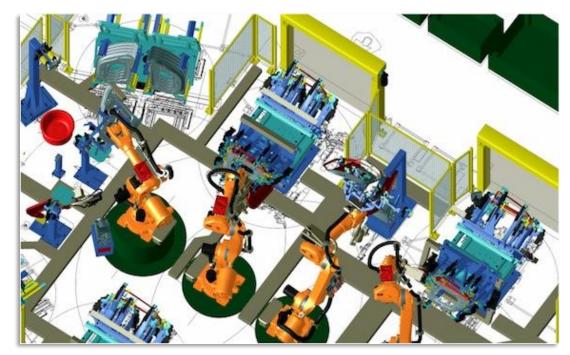


- AI: Artificial intelligence making decisions about a system
- ML: Machine learning modeling the behavior of a system
- NN: Neural networks are one implementation of machine learning
- DL: Deep learning is one implementation of Neural networks

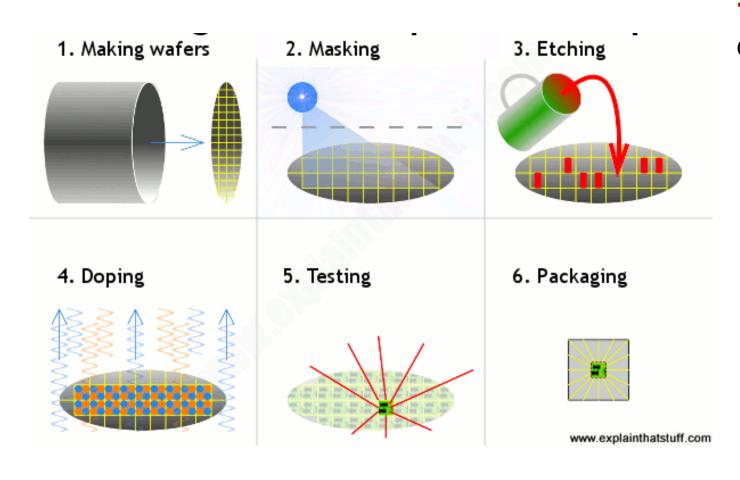
Digital twinning: Creating a virtual Representation of the Production Process

Traditional modeling: Physical models requiring little data but deep understanding of the process.

ML-based modeling: "black box" models requiring feature engineering coupled with sensor data.



CPS SENSORS: From Silicon wafer to IC Processes and Metrology

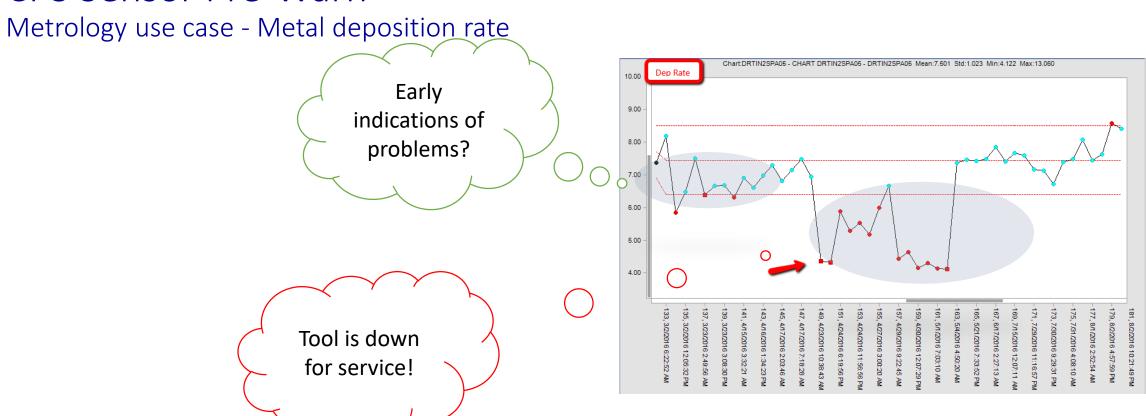


700 to 1500 operations for an average CMOS process

- 2-3 months manufacturing time
- 22-50 lithography layers
- 20 Diffusion Ops.
- **23-40** implants Ops.
- 13 DRY Etch Ops
- 78 WET Etch Ops
- 21 Thin-Film (metal) Ops.
- 7 CMP (Chemical-Mechanical-Polish)
 Ops.
- 240 Metrology Ops.
- 240 Yield Ops.

Source: TOWER

CPS Sensor Pre-Warn



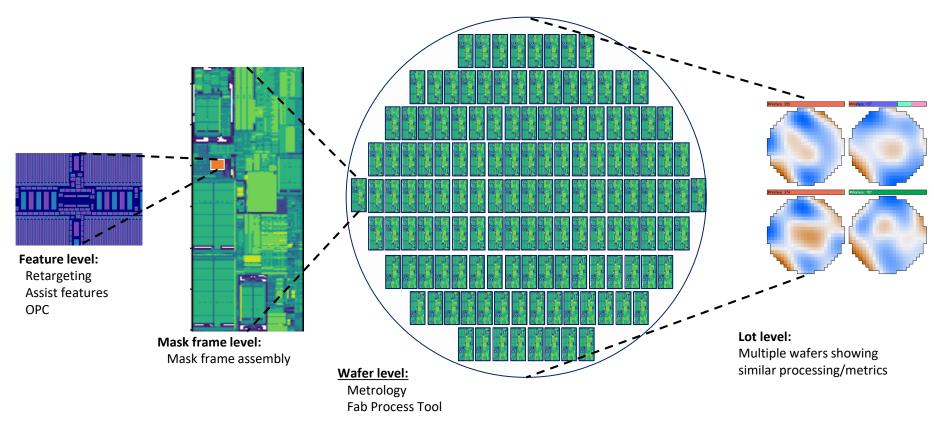
Al to pre-warn about process issues

Source: TOWER

Predictive Yield: Feature Engineering

From Feature to Lot level

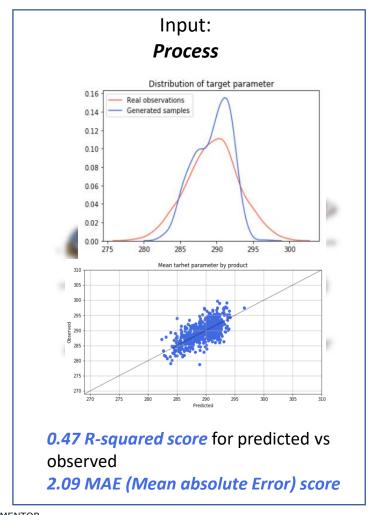
Different processes require their own level of abstraction to capture specific process behavior

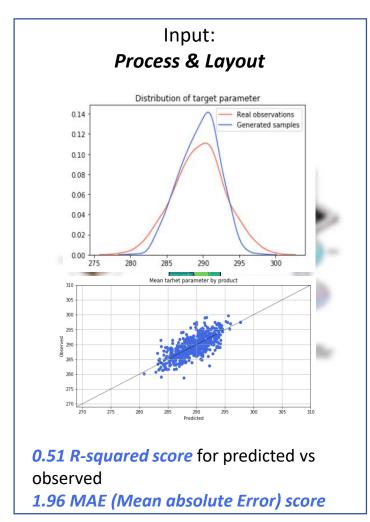


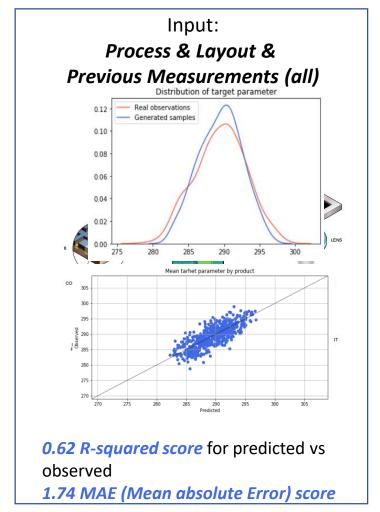
Source: MENTOR

European Collaborations Driving Smart Manufacturing
Excellence Webinar 2020

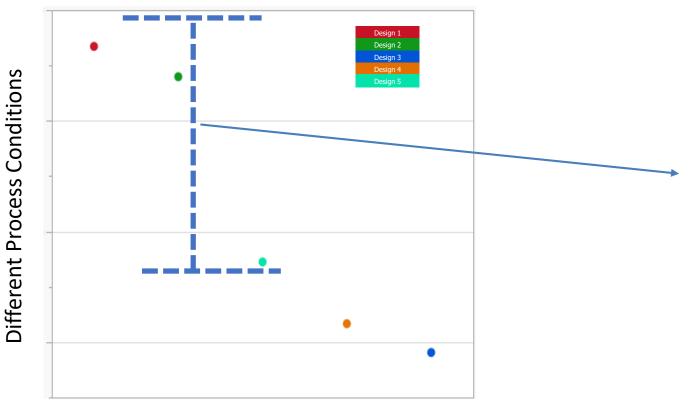
Full process sequence characterization







Digital Twin - Process characterization modeling & optimization

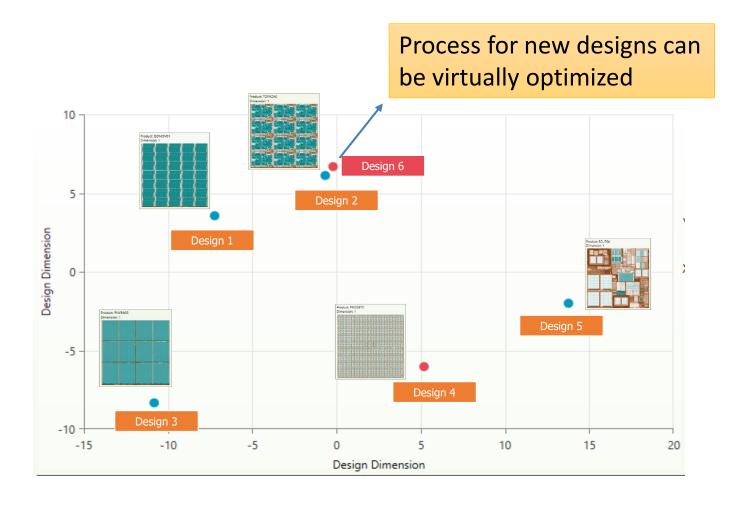


Different designs respond differently to process conditions

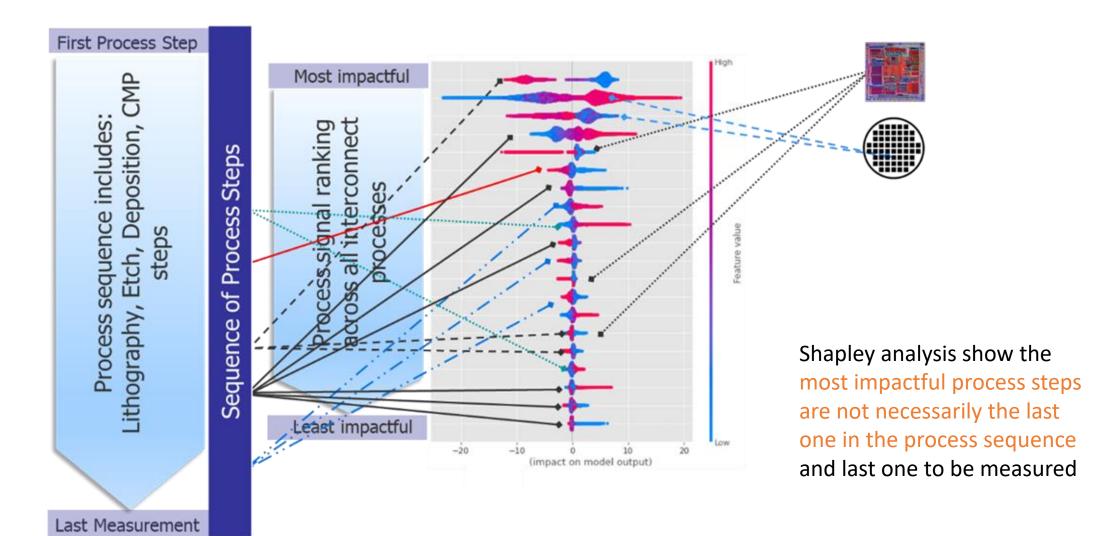
They are manually optimized in a time consuming and expensive fashion

Different Designs

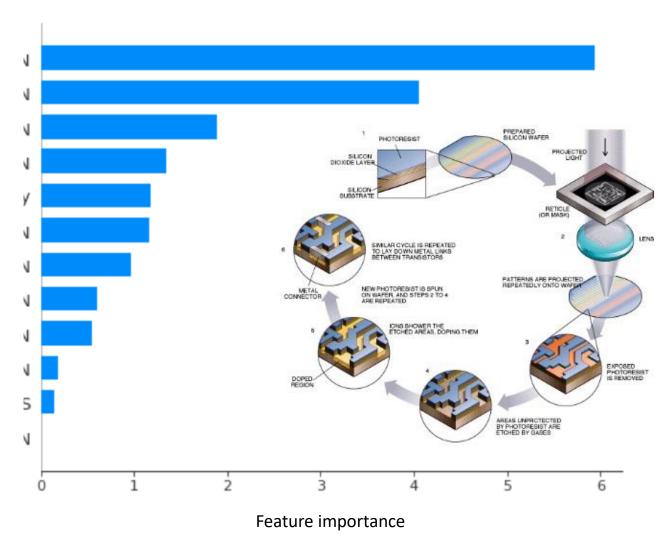
Digital Twin - Design-aware process optimization



Process Impact Analysis



Digital Twin Feature Based Yield Prediction



Feature importance assessment to guide correction or define optimal operation

Source: MENTOR

12/9/2020

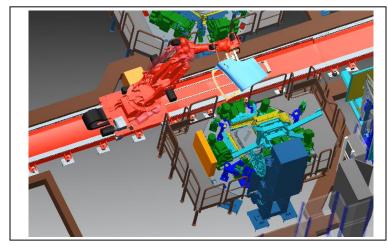
Automotive domain use cases

Use Case 1: Cars body line digitization with Pre-Warn scenarios FCA, NANOMOTION, TOWER, TU DELFT, POLITO

Problem statement: door welding defects rarity

Solution: development of an inline doors inspection Automated Defects Classification (ADC)

Weldspots with LED illumination

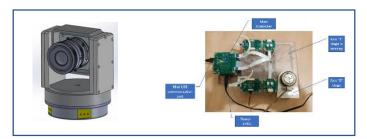


3D Process simulation

Partners test field

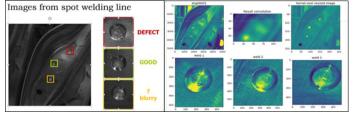
Welding doors inspection and ADC flow

solution and integration Design of innovative

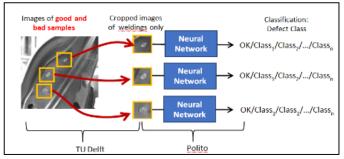


Nanomotion: Camera stabilized gimbal

TOWER: sensor and camera



TUD: Image conditioning



POLITO: Auto Defect classification (ADC)

Use Case 1: Cars body line digitization with Pre-Warn scenarios Automatic Defects Classification in the Semiconductor domain

 ADC is a central server used for Recipe Creation, Runtime Classification & Monitoring in semiconductor manufacturing

- ADC is developed in the Semiconductor domain to:
 - Help semiconductor manufacturers to increase and maintain IC chip yields
 - Monitor whether the process is under control
 - Provide high availability (uptime 99.99%)

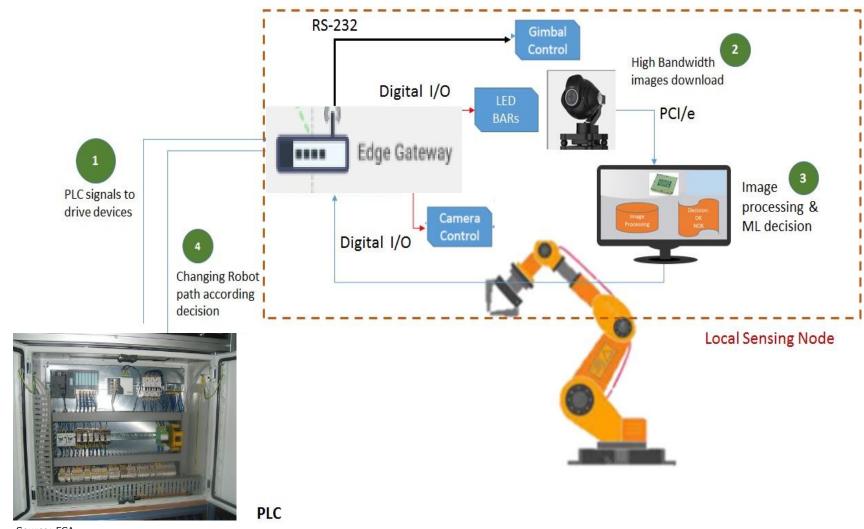
Automatic Defects Classification in the Semiconductor domain

 As design rule shrinks, defects hide in inspection noise → the amount of manually classified defects is increasing

 Classification can be done faster while taking into account much more attributes than human eyes can

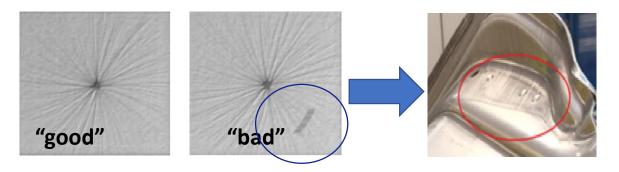
High consistency can be reached with an Automatic system

Automotive domain doors inspection and ADC flow overall architecture and processing pipeline



Automatic Defects Classification in the Automotive domain

Preliminary neural networks (NN) tested both on synthetic and real images



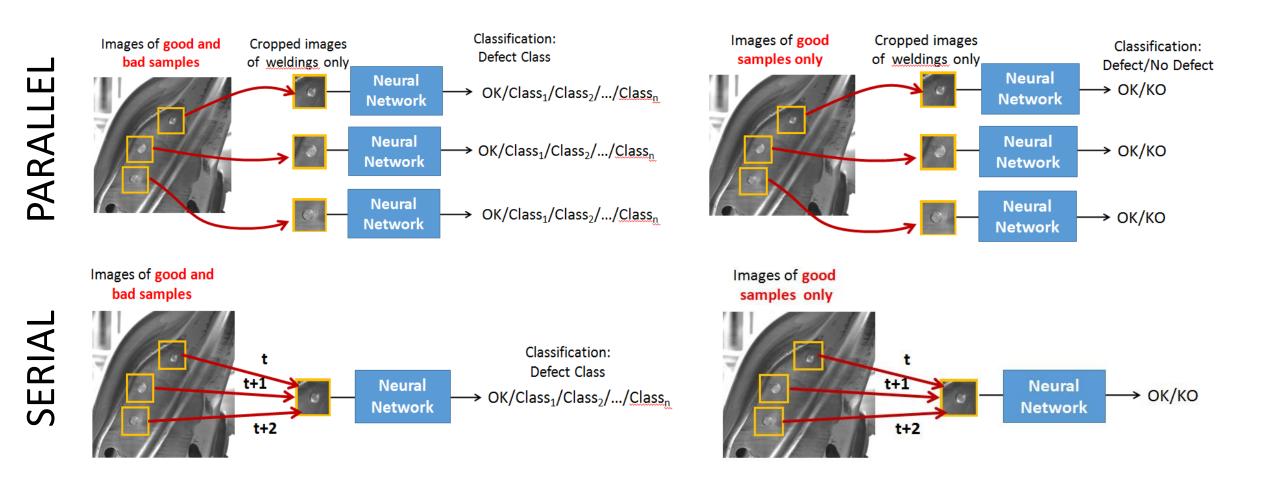
- An independent classification (a distinct network) for each soldering point were used
- Two approaches of NN were compared:
 - One-class classifiers (unsupervised)
 - Uses only ``good" samples, Classes are OK/KO
 - Traditional multiclass CNN (supervised)
 - Classes can be multiple
- Two different architectures of processing options were tested:
 - Serial
 - Parallel

Choice will depend on the cost (performance) of the overall pipeline of operations (camera, cropping, image processing)

Speed vs. size of the network

Automatic Defects Classification in the Automotive domain

SUPERVISED



European Collaborations Driving Smart Manufacturing
Excellence Webinar 2020

UNSUPERVISED

Automatic Defects Classification analogy between Automotive and Semiconductor - Outlook

- Exploring 'SEMI Automotive' ADC potential cross fertilization:
 - Is there potential value in adapting concepts from SEMI to automotive and vice versa?
- Objectives
 - Introduction to SEMI and Automotive ADC concepts, challenges and solutions
 - Potential cross fertilization ideas
- Action:
 - Map similarities and differences between SEMI ADC and Automotive ADC: needs, constraints, approaches

Use case 2: End-of-Line Engines Testbenches AVL, FCA

Problem statement:

End of Line engines tests efficiency:

- Conducting End Of Line engines hot testbench is expensive (time, effort, ...)
- Hot EoL tests are conducted for 5-10 % of all engines
- Typically engines are selected randomly, this poses the risk that erroneous engines are overlooked

Solution:

cycle time reduction:

- Reduction of false negatives (healthy engines that are qualified as erroneous) through data-driven selection (correlation of after sale, cold and hot test data)
- Reduction of false positives (erroneous engines that are qualified as healthy) through predictive warning driven from the cold test bench

EoL cold testbeds

• 30 sec

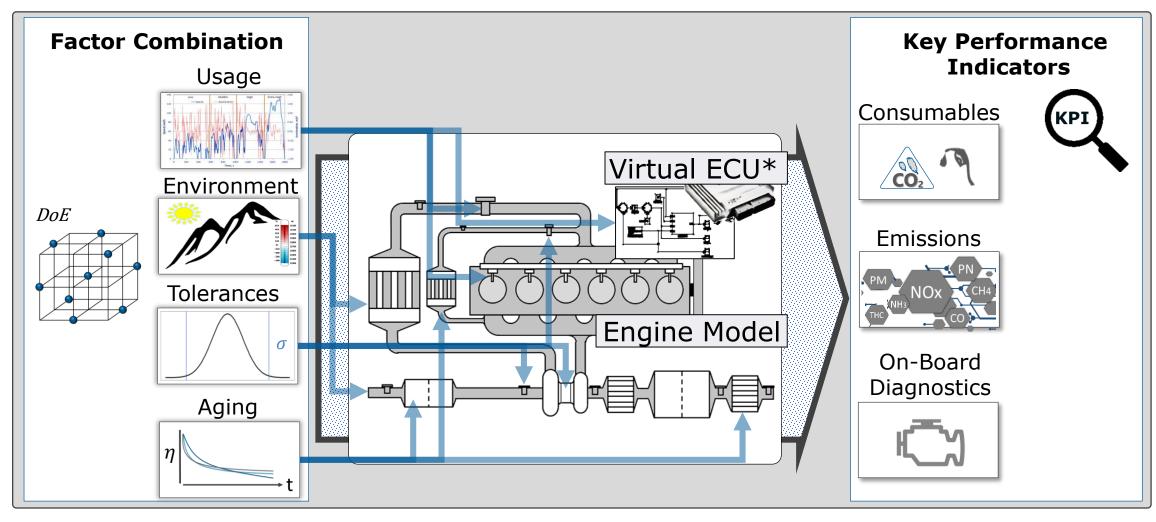
EoL hot testbeds

- ½ h 3 h
- oil, Electronic Control Unit, fire-up, ..

Engine performance testbeds

Source: AVL List GmbH

Use Case 2: EoL Evaluation of the impact on production tolerances on engine KPIs



European Collaborations Driving Smart Manufacturing

Excellence Webinar 2020

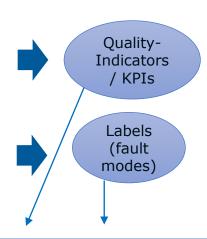
Use Case 2: Method EoL Cold/Hot Optimization

(historic data)

EoL cold tests

EoL hot tests

ICE*	Ch1 time series	 Ch [30+] time series
E1	1.2, 1.4, 1.7,	1.2, 1.4, 1.7,
E2	0.87, 1.2, 1.7,	0.87, 1.2, 1.7,
E3	0.27, 0.2, 0.7,	0.27, 0.2, 0.7,
En		



ICE no. (subset of EoL cold test)	Label (test oracle)
E1	healthy
E2	erroneous
E3	healthy
Em	erroneous

*Internal Combustion Engine

Model learning: e.g., classification model $Y_i = h\left(x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(m)}\right) + E_i$

Use Case 2: Method EoL Cold/Hot Optimization

(live data)

EoL cold tests

ICE no.	Ch1	 Ch [30+]	
E1	1.2, 1.4, 1.7,	1.2, 1.4, 1.7,	
E2	0.87, 1.2, 1.7,	0.87, 1.2, 1.7,	
E3	0.27, 0.2, 0.7,	0.27, 0.2, 0.7,	
En			

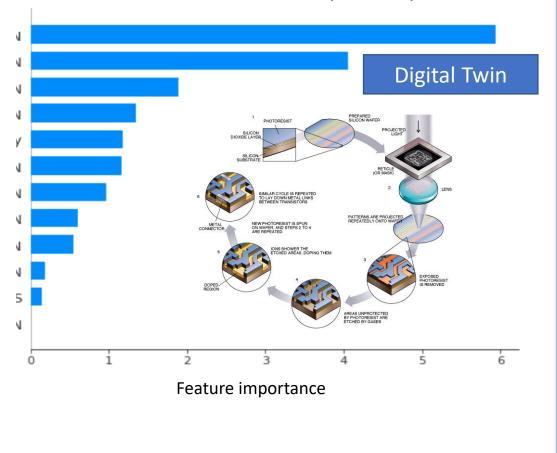
EoL hot tests

ICE	False positive/
no.	False negative
E1	healthy
E2	erroneous engines qualified as healthy
E18	healthy
Em	Healthy engine qualified as erroneous

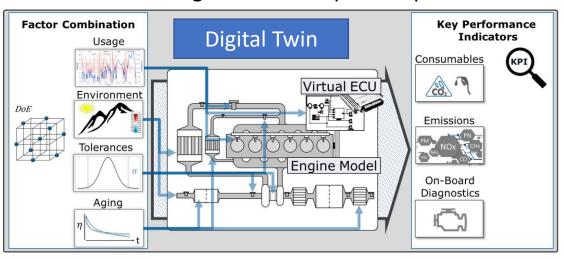
$$Y_i = h(x_i^{(1)}, x_i^{(2)}, ..., x_i^{(m)}) + E_i \rightarrow \text{prediction}$$

Use Case 2: Automotive / Semiconductor Predictive Analysis Analogy

Semiconductors wafers features process prediction



Automotive engines features process prediction



ICE no.	False positive/ False negative
E1	healthy
E2	erroneous engines qualified as healthy
E18	healthy
Em	Healthy engine qualified as erroneous

Summary and Outlook

- Data is the new oil and data analytics with artificial intelligence uses context to produce information
- Analogies between the Semiconductors and Automotive domains could enable cross fertilization between the two
- MADEin4 is expected to make a breakthrough for yield prediction and pre-warn scenarios accuracy and cycle time in both the Semiconductors and Automotive domains by:
 - Enhanced methodologies, algorithms and hardware such the case of automatic defects classification (ADC) in the production line
 - Improved digital twin modeling accuracy with design, process and metrology data from various sources

ADEin4

Thank You For Your Attention

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826589. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Netherlands, Belgium, Germany, France, Italy, Austria, Hungary, Romania, Sweden and Israel